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1. Comparing miRNA co-regulation scores and modules computed from TargetScan
and PicTar data

Figure 1. of the main text shows that the relative overlap between the full miRNA-target gene lists of PicTar and

TargetScan is only slightly above 10% (the maximum of the solid curve comparing the two databases). Such a low

overlap between the two interaction lists cannot explain the observed good agreement between the strongest miRNA

co-regulation scores and the lists of most and least essential miRNAs (see Fig. 4 of the main text). In Suppl. Fig. 1

we compare the miRNA co-regulation scores and miRNA co-regulation modules computed from TargetScan data to

those computed from PicTar data. Fig. 4 and the high similarity of the modules obtained from the two data sources

show that co-regulating modules of miRNAs efficiently extract high-quality information from the much less similar

miRNA-target interaction lists. The distribution of co-regulation scores is clearly bimodal in both cases (panels a

and c): a small group of high scores is separated from a large group of low scores. This separation is very strong in

TargetScan, where there are almost no co-regulation scores between 0.5 and 0.95, and somewhat less pronounced in

PicTar. When using PicTar data the presence of a small number of intermediate co-regulation scores (between 0.5

and 0.95) may explain the resulting lower number of co-regulation modules and also why several modules identified

with TargetScan are merged into a single module (see on the left of panel d). In both cases co-regulating modules of

miRNAs are well-separated: despite explicitly allowing overlaps, i.e., shared miRNAs, between them, we found only

very few overlaps.

Almost all modules identified with PicTar were identified with TargetScan, too, with the same or highly similar

participating miRNAs. Significant differences between the modules can be found only in the largest module. One

reason for this can be that PicTar is less stringent with the prediction of low scoring miRNA - target pairs than

TargetScan. Consequently, some of the co-regulation modules isolated entirely in the case of TargetScan may gain

co-regulation links of intermediate strength (below 0.95, but above the threshold, W ) when PicTar data are used.

2. Comparing membership in miRNA co-regulation modules computed from miRBase
and PITA data to those computed from TargetScan data

Comparing miRBase with TargetScan

With TargetScan data n1 = 111 of the total N1 = 455 miRNAs (nodes) are in the co-regulation modules, while

miRBase lists N2 = 711 nodes out of which n2 = 125 are in modules. The intersection of the two full sets contains

M = 69 miRNAs and the intersection of the two module node lists contains m = 50 miRNAs. To estimate the

probability, P , of this event, we assume statistical independence in the selections and compare the number of ways

for at least m module member nodes to be shared to the number of possibilities for a randomized control case. One



can pick the s = m. . . M nodes that are module members in both miRBase and TargetScan from the M shared nodes

of miRBase and TargetScan in
(

M

s

)

ways. The remaining n1 − s module member nodes of TargetScan that are not
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remaining N2 − M nodes of miRBase in
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ways. Thus, the number of cases when miRBase and TargetScan

share at least m module members is
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Human miRNA co−regulation scores and modules from PicTar data

Human miRNA co−regulation scores and modules from TargetScan data

Supplementary Figure 1. Human miRNA - miRNA co-regulation scores and co-regulating miRNA modules computed from

TargetScan and PicTar data. Subfigures (a) and (b) are reproduced from Fig. 2 of the main text. (a, c) The distribution

of miRNA co-regulation scores is bimodal in both cases. Note that the vertical scale is logarithmic. A small group of strong

(>0.95) co-regulation scores is clearly separated from the dominant group of weak co-regulation scores below the threshold, W .

The optimal co-regulation score thresholds, W = 0.406 for TargetScan and W = 0.324 for PicTar, are marked in both cases.

Lines connecting the data points are guides to the eye. (b, d) Co-regulating groups (modules) of miRNAs computed from

TargetScan and PicTar data are highly similar. Modules with similar participating miRNAs are at the same positions on the

two subfigures.

For the control case, we drop the condition that there should be miRNAs that are inside modules with both

2



miRBase and TargetScan. This means that simultaneously n1 nodes need to be selected from N1 and n2 nodes from

N2. The total number of ways to do this is
(

N1

n1

)(

N2

n2

)

. In summary, we estimate that the probability for the modules

computed with miRBase and TargetScan to share at least the observed number of nodes is

P =

∑M

s=m

(

M

s

)(

N1−M

n1−s

)(

N2−M

n2−s

)

(
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n1

)(

N2
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) .

We apply the logarithms of the factorials and compute that in the randomized case the probability for at least m = 50

nodes (the same m nodes) to be contained by the co-regulation modules with both miRBase and TargetScan as a

primary data source is P = 1.54 × 10−63.

Comparing PITA with TargetScan

PITA lists N2 = 470 miRNAs (nodes) out of which n2 = 85 are in modules. The intersection of the two full sets

(PITA and TargetScan) contains M = 70 miRNAs and the intersection of the two module node lists contains m = 55

miRNAs. Similarly to the previous section, we estimate that in the randomized control case the probability for at

least m = 55 nodes (the same nodes) to be contained by the co-regulation modules with both PITA and TargetScan

is P = 3.40 × 10−76.

3. Similarity of miRNA co-regulation scores and predicted miRNA essentialities:
Comparing miRBase with TargetScan and PITA with TargetScan

Similarly to Fig. 5 of the main text Suppl. Fig. 2 compares the miRNA co-regulation scores and essentiality levels

computed from different data sources. We find again that co-regulation, scores, modules of miRNAs and miRNA

essentiality levels efficiently extract high-quality information from the lists of miRNA-target pairs, which have, as of

yet, a lower confidence.
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Supplementary Figure 2. Left panel. Comparing miRBase and TargetScan through miRNA-target gene silencing scores

(solid line, this curve is repeated from Fig. 2 of the main text), miRNA - miRNA co-regulation scores (dotted line) and miRNA

essentialities (dash-dot). When replacing TargetScan as a data source by miRBase the list of top scoring miRNA co-regulation

links and the list of the most essential miRNAs are clearly much more stable than the list of strongest (most efficiently silencing)

miRNA-target gene pairs. Right panel. The same comparison for TargetScan and PITA.
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4. Essentiality of each miRNA computed with TargetScan and PicTar data

In the table below we list the essentiality score and the rank of that score for each miRNA with TargetScan and

PicTar data. A dash indicates that the essentiality score is not available. The names of miRNAs that are among

the 10 most essential in both cases are printed in boldface with red color. Similarly, the names of miRNAs that are

among the 10 least essential in both cases are printed in italics with blue color.

miRNA Predicted essentiality

with TargetScan or PicTar data

(rank) score (rank) score

hsa-miR-130a (1) 1.080 (1) 1.083

hsa-miR-195 (2) 1.040 (2) 1.030

hsa-miR-196b - (3) 1.029

hsa-miR-144 - (4) 1.013

hsa-miR-15b (3) 0.993 (12) 0.911

hsa-miR-30d (4) 0.970 (5) 1.001

hsa-miR-136 - (6) 0.976

hsa-miR-30a-5p (6) 0.944 (8) 0.946

hsa-let-7g (7) 0.938 (7) 0.967

hsa-miR-9 - (9) 0.931

hsa-miR-103 - (11) 0.921

hsa-miR-30e-5p (5) 0.960 (13) 0.897

hsa-miR-30c (8) 0.917 (10) 0.922

hsa-miR-25 (9) 0.891 (15) 0.886

hsa-miR-32 (10) 0.884 (16) 0.876

hsa-let-7c (11) 0.856 (14) 0.889

hsa-miR-99b (12) 0.849 (17) 0.856

hsa-miR-27b (13) 0.828 (22) 0.833

hsa-let-7i (14) 0.825 (18) 0.855

hsa-let-7f (15) 0.825 (19) 0.852

hsa-miR-101 - (24) 0.823

hsa-miR-99a (16) 0.820 (26) 0.820

hsa-miR-100 (17) 0.814 (23) 0.825

hsa-miR-27a (18) 0.812 (27) 0.816

hsa-let-7e (19) 0.808 (20) 0.842

hsa-miR-15a (20) 0.797 (25) 0.821

hsa-miR-23a (21) 0.786 (30) 0.791

hsa-let-7d (22) 0.785 (21) 0.841

hsa-miR-23b (23) 0.780 (32) 0.784

hsa-let-7b (24) 0.776 (29) 0.815

hsa-miR-16 (25) 0.757 (31) 0.785

hsa-miR-93 (26) 0.751 (33) 0.744

hsa-miR-106b (27) 0.748 (34) 0.743

hsa-miR-19a (28) 0.734 (35) 0.733

hsa-miR-19b (29) 0.729 (36) 0.728

hsa-let-7a (30) 0.716 (37) 0.721

hsa-miR-20a (31) 0.683 (38) 0.678

hsa-miR-29a (32) 0.662 (39) 0.670

hsa-miR-17-5p (33) 0.656 (28) 0.815

hsa-miR-29c (34) 0.649 (40) 0.654

hsa-miR-181b (35) 0.618 (42) 0.617

hsa-miR-29b (36) 0.615 (41) 0.618

hsa-miR-181a (37) 0.603 (43) 0.599

5. miRNA - target interactions

We first compared human miRNA - human target interactions from one manually curated and four computational

data sources. Then, for our analyses we used data from TargetScan and as a control PicTar (see, e.g., Suppl. Fig. 1).

The five data sources were TarBase (as provided in a filtered form under “known targets” by miRBase in June 2008)

[1], miRBase (version 5) [2], PicTar (vertebrates: “conservation in mammals”, Dec. 2007) [3], PITA (top: “3-15”,

Nov. 2007) [4] and TargetScan v4.1 (conserved and non-conserved sites) [5]. TarBase provides a manually collected

list of experimentally verified interactions, while the four computational data sets (i) provide a score for each predicted

miRNA - target (transcript, protein or gene) link quantifying the efficiency of silencing and (ii) apply a lower cutoff

score (a threshold) below which they discard all links.

In PicTar and PITA target transcripts are identified by RefSeq mRNA IDs, miRBase contains Ensembl transcript
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IDs, while TargetScan and TarBase contain gene/protein names. We mapped all target names to Ensembl gene IDs

and in each of the four computationally predicted lists we calculated a single unified interaction score for each miRNA

- target gene pair. Consider now one of the four computationally predicted interaction lists. A miRNA, M , may

bind at multiple sites to the same transcript, T1, with the interaction scores w
(1)
M,T1

, w
(2)
M,T1

, etc. In addition, M

may silence several transcript variants (T1, T2, T3, . . . ) produced from the same gene, G. To obtain a single unified

(silencing) interaction score, wM,G, for the interacting pair M − G, one needs to merge into wM,G all interaction

scores between M and (the transcript variants produced from) G. The list of all scores between M and G may

look like this: w
(1)
M,T1

, w
(2)
M,T1

, wM,T2
, w

(1)
M,T3

, w
(2)
M,T3

, w
(3)
M,T3

, . . .. We denote by wi one of the interaction scores from this

list. In the four computationally predicted data sets we computed the unified interaction score, wM,G, between a

miRNA and a target gene with different rules. Following closely the thermodynamical and biological concepts behind

each prediction algorithm and additional advice received from the authors/maintainers of the databases we applied

these rules: wM,G = −maxi(log wi) for miRBase, wM,G =
∑

i log wi for PicTar, wM,G = − log(
∑

i e−wi) for PITA and

wM,G = max(0,−
∑

i wi) for TargetScan. We selected the sign of wM,G everywhere with the goal to make a larger

score represent a higher silencing efficiency.

We used the following raw scores (wi): orthology P value (Pog) from miRBase, “PicTar score” from PicTar, differ-

ence of free energy change (∆∆G) from PITA and the “context score” of both conserved and non-conserved sites from

TargetScan. We mapped target transcript and protein names to gene names with our Perl scripts processing Ensembl

files and with the online conversion tool Synergizer [6]. To locate the current miRNA names for the interactions listed

in TarBase we used the sequence of each regulator as provided by TarBase and looked up the full name in miRBase

by the sequence. We note that all five sources contain miRNA names with the suffixes -3p and -5p, but only miRBase

and PITA contain miR* names. We discuss only human miRNAs and omit the hsa- prefix from each name.

6. The co-regulation network of miRNAs and its modules

In the co-regulation network of miRNAs two miRNAs (nodes) are connected, if they share at least one target gene

and the weight (score) of each link is computed as the similarity of the regulation patterns of the two miRNAs.

To compute the score of each link we first listed for any miRNA, M , its unified interaction score with all genes in

the genome, ~vM = (wM,G1
, wM,G2

, . . .), based on TargetScan data. We set the silencing score to zero for any non-

interacting regulator-target pair and computed the co-regulation score (link weight) of two miRNAs (network nodes)

as the correlation of their ~vM vectors.

To find modules in the co-regulation network of miRNAs, we discarded co-regulation links with weights below a

fixed threshold, W . With the Clique Percolation Method, [7], implemented by CFinder [8], we simultaneously selected

the optimal link weight threshold, W , and computed the modules of the network. The Clique Percolation Method

(CPM) finds groups of nodes in the network that are connected more densely inside the group than between groups

and at the same time it selects an optimal link weight threshold, W . Note that the CPM explicitly allows for overlaps

between the identified network modules. In the CPM the requested within-module link density is controlled by the

clique size parameter, k. When requesting a high density of links (high k) inside modules, one will obtain a few small,

but very densely internally linked modules. In this case many nodes of the network might not be contained by the

modules, i.e., coverage will be low. On the other hand, requesting a low density of within-module links (low k) will

lead to large and biologically meaningless modules. In other words, the precision of the modules will be low in this

case.

A sign of low coverage is the absence of large and medium-sized modules, while low precision is accompanied by

a few of huge and many small modules. Similarly to the clique size parameter, k, the link weight threshold, W ,

can adjust the sizes of the resulting modules. At a low W the modules will contain many links of the network and
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have a high coverage combined with a low precision. To find the optimal (k, W ) parameter pair, a tradeoff between

the coverage and precision of the modules, we followed the technique from Ref. [7]. We identified the richest (most

informative) module structure by the (k, W ) pair for which small, medium sized and large modules are all present.

From the commonly used distribution functions many, e.g., the exponential and normal distributions, decay quickly

and would allow almost exclusively small modules. Thus, we selected the (k, W ) pair for which the module size

distribution is closest to a power-law. To achieve this first we scanned a wide range of (k, W ) pairs and for each

parameter set we computed the modules of the network with the CPM. Then for each (k, W ) parameter pair we

calculated the sizes of the modules, i.e., the numbers of nodes (miRNAs) in each module: s1 ≥ s2 ≥ . . . . Finally, we

selected the (k, W ) pair (i) providing the largest module sizes such that (ii) s1/s2 just reached 2 from above indicating

the transition point between high coverage and high precision. With TargetScan (PicTar) data the optimal parameter

pair was k = 3 and W = 0.406 (k = 3 and W = 0.324).

7. Computing the similarities of the vectors of silencing scores with the Pearson
(covariance) and Spearman (rank) correlations
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Supplementary Figure 3. Comparing how the Pearson (covariance) and Spearman (rank) correlation measures quantify the

similarity between the vectors of the silencing scores of two miRNAs. (a) The horizontal coordinate of each point shows the

silencing score between let-7a and a gene, while the vertical coordinate of the same point shows the silencing score between

let-7g (red crosses) or miR-15a (blue circles) and the same gene. Compared to the normal distribution the “silencing vectors”

of all three miRNAs, i.e., the lists of horizontal the vertical coordinates, contain outliers. Nevertheless, the Pearson correlation

can still efficiently distinguish between the two types of relationships: the Pearson correlation for the pair let-7g - let-7a is

0.999, while for the pair miR-15a - let-7a it is 0.0787. The Spearman rank correlation for the same two pairs is 0.999 and 0.795,

respectively. To see which of these two differences is significant, we have compared all pairs with both correlation measures.

(b) The Spearman rank correlation and the Pearson correlation between the silencing score vectors of any two miRNAs. A

high (S > 0.98) Spearman correlation and a high (P > 0.8) Pearson correlation are usually equivalent. There are 224 points,

i.e., miRNA-miRNA pairs in the top right corner (high S, high P ) of the figure and only 26 points, in the bottom right corner

(high S, P < 0.2). The first group (high S, high P ), where the two correlation measures agree, is clearly separated from

the “cloud” of other points, thus, it is statistically significant. The second group (high S, low P ), where the two correlation

measures disagree, is much smaller and seems to be continuously connected to the “bulk” cloud of points, thus, it is statistically

much less significant.

We have tested whether the Pearson (covariance) and Spearman (rank) correlation measures provide significantly
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different results when comparing the vectors of silencing scores of miRNA-miRNA pairs. In panel (a) of Suppl. Fig. 3

we have plotted the silencing scores of selected miRNAs on the same genes, while in panel (b) we show for each

miRNA-miRNA pair the Pearson vs. the Spearman correlation of their silencing scores. We find that, with a few

exceptions, the most strongly correlated miRNA-miRNA pairs are identical when computed with the two correlation

measures, thus, for the particular data set neither of the two measures is more appropriate than the other.

8. Predicted essentialities of miRNAs after shuffling the miRNA-miRNA co-
expression weights.
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Supplementary Figure 4. Changes in the predicted miRNA essentialities after the co-expression weights of miRNA-miRNA

pairs (from Supplementary Table 20 of Ref. [9]) have been randomly permuted. Only module member miRNAs are shown.

(a) This panel is a copy of Figure 4 from the main text. (b) The same predicted essentiality values after keeping the list

of co-expressed miRNA-miRNA pairs constant and shuffling the co-expression weights. Observe that differences between

the predicted essentialities of miRNAs are strongly reduced after randomisation. In particular, low predicted essentialities

disappear. We have marked the originally predicted 6 most essential miRNAs after randomisation. Note that these miRNAs

have lost their top ranks and are randomly mixed with the other miRNAs.

As an additional test of robustness, we have tested whether the predicted miRNA essentiality levels are preserved

after the randomisation of miRNA expression data. By keeping the list of co-expressed miRNA-miRNA pairs constant,

we have randomly permuted the co-expression weights among these pairs. We have used this shuffled list of miRNA-

miRNA co-expression weights to produce Suppl. Fig. 4b. Panel (a) of this figure is a copy of Figure 4 from the

main text and a comparison between panels (a) and (b) shows that differences between the predicted essentialities

of miRNAs are strongly reduced after randomisation. In particular, low predicted essentialities disappear. As the

randomisation step destroys expression correlations between co-regulating miRNAs, and thus, increases the number of

miRNAs not co-expressed with their co-regulating partners, this is indeed the expected behaviour of the null control.

9. The co-regulation modules merging miRNAs from the same miRBase-defined
miRNA family.
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Supplementary Figure 5. Co-regulation modules of miRNA families. While in figure Fig. 2.c of the main text each miRNA

is displayed separately, this figure shows the same modules by merging all miRNAs from the same family. The lists of miRNA

family members were taken from miRBase.

To test how miRNA families are represented in the co-regulation modules shown in Fig. 2c of the main text, in

Suppl. Fig. 5 we have merged miRNAs from the same family (as defined by miRBase). After collapsing miRNA

families, we find well-separated modules, similarly to the original case. We add here two technical comments. At

the time of writing the human miRNA miR-368 contained by TargetScan is not present in miRBase, but there is

a miRNA family called mir-368, thus, we assigned miR-368 to the family mir-368. Similarly, the human miRNA

miR-623 is not assigned to a family in miRBase, therefore, we assigned it a separate family, mir-623.
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